(x^2+3x-1)+(2x+3)(x-5)=0

Simple and best practice solution for (x^2+3x-1)+(2x+3)(x-5)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2+3x-1)+(2x+3)(x-5)=0 equation:



(x^2+3x-1)+(2x+3)(x-5)=0
We get rid of parentheses
x^2+3x+(2x+3)(x-5)-1=0
We multiply parentheses ..
x^2+(+2x^2-10x+3x-15)+3x-1=0
We get rid of parentheses
x^2+2x^2-10x+3x+3x-15-1=0
We add all the numbers together, and all the variables
3x^2-4x-16=0
a = 3; b = -4; c = -16;
Δ = b2-4ac
Δ = -42-4·3·(-16)
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{13}}{2*3}=\frac{4-4\sqrt{13}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{13}}{2*3}=\frac{4+4\sqrt{13}}{6} $

See similar equations:

| 600+43x=6600-77x | | 8p^2=24p | | 0=8x/(3x^2/3) | | 36-8=4y | | 5/x+x/7=5/14 | | 41/6=m/(3/5) | | 154=-0.8a+176 | | 20-3x+2x=-4x-10 | | 7p=9p-4 | | 6600-77x=5522 | | 0.5(x+2,000)=3,000 | | 3x^2+2×=300 | | 7x^2+3x-364=0 | | 600+43x=1675 | | 2a-8a=12+-8a | | 9/8=21/2a | | 2x+3=4/5 | | 7x2+3x-364=0 | | 1=-2/3(5)+b | | -4x+2(-6-6x)=-6 | | 5−(7a+8)=6a+4 | | 7(x-3)=3(4-2x)=-8 | | 3n+16=n-8n | | 7(4y+2)=36 | | 9n=4(2n)=68 | | 5x²=60 | | 25=k/5-5 | | 439=12(s-30)+55 | | X-8x3-7=29 | | 9d-8d+6d=7 | | F(x)=2/x^2-7x+10 | | 11=7x+3 |

Equations solver categories